首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4819篇
  免费   923篇
  国内免费   2141篇
  2024年   3篇
  2023年   276篇
  2022年   226篇
  2021年   375篇
  2020年   382篇
  2019年   451篇
  2018年   345篇
  2017年   370篇
  2016年   395篇
  2015年   346篇
  2014年   332篇
  2013年   328篇
  2012年   273篇
  2011年   262篇
  2010年   260篇
  2009年   360篇
  2008年   297篇
  2007年   355篇
  2006年   308篇
  2005年   271篇
  2004年   229篇
  2003年   194篇
  2002年   172篇
  2001年   165篇
  2000年   142篇
  1999年   112篇
  1998年   121篇
  1997年   70篇
  1996年   80篇
  1995年   53篇
  1994年   45篇
  1993年   39篇
  1992年   53篇
  1991年   34篇
  1990年   41篇
  1989年   23篇
  1988年   17篇
  1987年   6篇
  1986年   9篇
  1985年   14篇
  1984年   6篇
  1983年   2篇
  1982年   12篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1976年   4篇
  1974年   1篇
  1958年   9篇
排序方式: 共有7883条查询结果,搜索用时 328 毫秒
41.
Most estimates of regional and global soil carbon stocks are based on extrapolations of mean soil C contents for broad categories of soil or vegetation types. Uncertainties exist in both the estimates of mean soil C contents and the area over which each mean should be extrapolated. Geographic information systems now permit spatially referenced estimates of soil C at finer scales of resolution than were previously practical. We compared estimates of total soil C stocks of the state of Maine using three methods: (1) multiplying the area of the state by published means of soil C for temperate forests and for Spodosols; (2) calculating areas of inclusions of soil taxa in the 1:5,000,000 FAO/UNESCO Soils Map of the World and multiplying those areas by selected mean carbon contents; and (3) calculating soil C for each soil series and map unit in the 1:250,000 State Soil Geographic Data Base (STATSGO) and summing these estimates for the entire state. The STATSGO estimate of total soil C was between 23% and 49% higher than the common coarse scale extrapolations, primarily because STATSGO included data on Histosols, which cover less than 5% of the area of the state, but which constitute over one-third of the soil C. Spodosols cover about 65% of the state, but contribute less than 39% of the soil C. Estimates of total soil C in Maine based on the FAO map agreed within 8% of the STATSGO estimate for one possible matching of FAO soil taxa with data on soil C, but another plausible matching overestimated soil C stocks. We also compared estimates from the 1:250,000 STATSGO database and from the 1:20,000 Soil Survey Geographic Data Base (SSURGO) for a 7.5 minute quadrangle within the state. SSURGO indicated 13% less total soil C than did STATSGO, largely because the attribute data on depths of soil horizons in SSURGO are more specific for this locality. Despite localized differences, the STATSGO database offers promise of scaling up county soil survey data to regional scales because it includes attribute data and estimates of areal coverage of C-rich inclusions within map units. The spatially referenced data also permit examination of covariation of soil C stocks with soil properties thought to affect stabilization of soil C. Clay content was a poor predictor of soil C in Maine, but drainage class covaried significantly with soil C across the state.  相似文献   
42.
Biomass, litterfall, litter standing crop, and decomposition was studied in a native subtropical alluvial forest locally known as Selva Marginal (SM) and an exotic Ligustrum lucidum forest (LF) at the Reserva Integral de Punta Lara, Buenos Aires Province, 34°47S and 58°1W. The alluvial forest site was at the southern limit of distribution of subtropical forests in South America. The Ligustrum forest was invading disturbed areas. Total biomass was 147.7 Mg/ha (86% aboveground and 14% belowground) in the SM, and 71.4 Mg/ha (93% and 7%, respectively) in the LF. Litterfall was 10.3 Mg/ha·yr and 13.8 Mg/ha·yr respectively. Annual leaf decomposition rate was greater for Ligustrum (k=4.07) than for SM species (k=1.48). The mean residence time of aboveground biomass was 12 yr for the SM and 5 yr for the LF. The k1 values (litterfall/standing crop) were 1.9 and 2.0 for SM and LF respectively. The influence of coastal road and wall in the hydroperiod, native forested wetland ecosystem survival and exotic forest invasion is discussed.  相似文献   
43.
Over a period of 7 years the biology and phenotypic variability of Chusquea culeou were studied at 5 locations in cool temperate forests of southern Argentina. Excavated rhizomes had an average of 1.1 successful rhizome buds, and an average of 2.1 years elapsed between successive generations of rhizomes. Rhizome buds usually develop within the first four years after a rhizome forms. Height, volume and weight of a culm can be calculated from its diameter 1 m above the ground. Culm size, length of foliage leaf blades, and pattern of secondary branching differed among study sites. Dead culms were numerous and commonly remained erect for more than 7 years after dying. New culm shoots appear in spring and reach full size within a few months. Shoots can grow more than 9 cm/day. Less than half of the shoots survived a year; most were killed by moth larvae. Multiple primary branch buds emerge through the culm leaf sheaths in the second spring. The mean number of branch buds at mid-culm nodes varied between 34.8 and 81.5, and the mean number of primary branches was between 22.8 and 40.8. Number and length of branches, and number and length of foliage leaf blades at each node is related to the position of the node on a culm. Most branches grow about 3 cm and produce 1 to 3 foliage leaves annually. Foliage leaf blades generally live 2 years or more; few survive 6 years. Relative lengths of foliage leaf blades and their spacing along a branch permit recognition of annual cohorts.Both gregarious and sporadic flowering have been reported, and every year a few isolated plants flower and die. Length of the life cycle is unknown. Seedlings require up to 15 years to produce culms of mature size. Foliage branches may live more than 23 years, and culms may survive 33 years. Extensive loss of new shoots to predation suggests that gregarious flowering may be driven by a need to escape parasitism. C. culeou clumps expand slowly. Average annual rate of increase of the number of live culms in a clump was 4.6%. Methods of seed dispersal are undocumented. A dense stand of Chusquea culeou had an estimated phytomass of 179 tons/hectare (dry weight), 28% of which was underground. Net annual production was about 16 t/ha dry weight.  相似文献   
44.
热带-亚热带森林中猕猴的食性   总被引:5,自引:0,他引:5  
采用跟踪观察法对热带-亚热带森林中的猕猴种群的食性及其与植被类型的关系进行了调查,结果表明,猕猴主要选择季雨林或次生季雨林为其觅食场所,栖息地植物的地理分布和种类直接影响其食性,猕猴对植物各部位的采食频度随植物生长期而变化.  相似文献   
45.
藻-菌生态系统代谢功能的生态学研究   总被引:4,自引:0,他引:4  
在室内模拟条件下,研究了一些生态因子对藻-菌(A+B)生态系统代谢有机碳(C6H12O6)、NH3-N和无机磷(IP)的影响.研究结果表明,当藻-菌生态系统中藻(A)或菌(B)的起始数量一定时,其代谢C6H12O6的速率,随与之组合的B或A的起始数量增加(数量比则相应降低)而增加.在光照和黑暗条件下,A+B系统代谢上述3种营养物质的速率均有一定的差异.黑暗下C6H12O6的平均代谢速率较光照下高12.3%(P<0.05),IP和NH3-N的平均代谢速率则分别较光照下低14.4%(P<0.05)和16.2%(P<0.001).在A+B系统和A、B单培养物中,3种营养物质的代谢速率均随有机负荷量增加而增加,而且A+B系统的代谢速率分别高于单培养的A和B,其中NH3-N代谢尤为显著.文章还就生态系统结构与功能的关系问题进行了讨论.  相似文献   
46.
高寒草甸生态系统中牦牛体重和采食量动态模型的研究   总被引:3,自引:0,他引:3  
高寒草甸生态系统中牦牛体重和采食量动态模型的研究黄大明(清华大学生物科学与技术系,北京100084)赵松岭(兰州大学,兰州730000)Dynamicmodelsofyakliveweightanditsintakeinalpinemeadoweco...  相似文献   
47.
Summary Six islands, each less than a hectare in area, were isolated in about 1913 from the mainland of central Panamá by the rising waters of Gatun Lake. By 1980, the diversity of trees on all but one of these islands was far lower than on mainland plots of comparable size. A restricted subset of tree species has spread on these islands, notablyProtium panamense, Scheelea zonensis, Oenocarpus panamanus andSwartzia simplex. We constructed a null model to predict how chance would change tree diversity and the similarity of tree species compositions of different islands, assuming that each mature tree has equal chances of dying and/or reproducing, regardless of its species. This model cannot account for the diminished diversity of the changes in vegetation on these islands: some factors must be favoring a particular set of tree species.Two factors, exposure to wind and absence of mammals, seem needed to bring about the vegetation changes observed on these small islands. Their vegetation shows many signs of wind damage and of adaptation to resist wind, reflecting its exposure to dry season winds and storm winds sweeping across the lake from the west. Their most common tree species appear to have spread because mammals rarely visit these small and isolated islands. Seed of these common species are normally much eaten by mammals and do not need burial by mammals to escape insect attack.A thorough grasp of plant—animal interactions is needed to understand the events that have taken place on these islands. Identifying those keystone animals essential for maintaining plant diversity is a necessary element of reserve design and forest management in the tropics.The US government has the right to retain a non-exclusive, royalty-free license in and to any copyright covering this paper.  相似文献   
48.
Deforestation and land use in the Brazilian Amazon   总被引:4,自引:0,他引:4  
Deforestation in the Brazilian Amazon was less than 1% before 1975. Between 1975 and 1987 the rate increased exponentially. By 1985, world opinion and attention to the destruction of the richest biome on earth led to elimination of some of the major incentives that had fueled deforestation. Favorable credit policies for cattle ranchers, rather than population growth, explains the process of deforestation in the Brazilian Amazon. The paper suggests other actions that may be taken to reduce deforestation, and examines the rapid growth rates of secondary successional species in a colonization area.  相似文献   
49.
50.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号